How Does One Cut a Triangle?
Soifer, Alexander
Produktnummer:
1885fc8dd818104548bed2631e333d982b
Autor: | Soifer, Alexander |
---|---|
Themengebiete: | Algebra Paul Erdös convex figures five point problem function geometry integral independence mathematics pool table problem problem solving |
Veröffentlichungsdatum: | 10.09.2009 |
EAN: | 9780387746500 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 174 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Produktinformationen "How Does One Cut a Triangle?"
This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of problems, such as a pool table problem, a fifty-dollar problem, a five-point problem, and a joint problem. By proving these examples, the author demonstrates that research is a collection of mathematical ideas that have been developed throughout the course of history.The author brings mathematics alive by giving the reader a taste of what mathematicians do. His book presents open problems that invite the reader to play the role of the mathematician. By doing so, the author skillfully inspires the discovery of uncharted solutions using his solutions as a guide.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen