High Dimensional Clustering and Applications of Learning Methods
Cui, Ying
Autor: | Cui, Ying |
---|---|
Veröffentlichungsdatum: | 23.04.2009 |
EAN: | 9783838300801 |
Sprache: | Englisch |
Seitenzahl: | 160 |
Produktart: | Kartoniert / Broschiert |
Verlag: | LAP LAMBERT Academic Publishing |
Untertitel: | Non-Redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy |
Produktinformationen "High Dimensional Clustering and Applications of Learning Methods"
This book is divided into two parts. The first part is about non-redundant clustering and feature selection for high dimensional data. The second part is on applying learning techniques to lung tumor image-guided radiotherapy. In the first part, a new clustering paradigm is investigated for exploratory data analysis: find all non-redundant clustering views of the data. Also a feature selection method is developed based on the popular transformation approach: principal component analysis (PCA). In the second part, machine learning algorithms are designed to aid lung tumor image-guided radiotherapy (IGRT). Specifically, intensive studies are preformed for gating and for directly tracking the tumor. For gating, two methods are developed: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. For the tracking problem, a multiple- template matching method is explored to capture the varying tumor appearance throughout the different phases of the breathing cycle.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen