Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Harmonische Räume und ihre Potentialtheorie

19,94 €*

Versandkostenfrei

Produktnummer: 16A14943977
Autor: Bauer, Heinz
Veröffentlichungsdatum: 01.01.1966
EAN: 9783540036050
Auflage: 1966
Sprache: Deutsch
Seitenzahl: 184
Produktart: Kartoniert / Broschiert
Verlag: Springer Berlin Springer Berlin Heidelberg
Untertitel: Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung
Produktinformationen "Harmonische Räume und ihre Potentialtheorie"
_ .... _---------­ ------------ Während der letzten zehn Jahre konnte :man eine Neubelebung des Interesses für die Potentialtheorie beobachten. Zwei Ursachen lassen dies verständlich erscheinen: Einmal die innere Weiterentwicklung der Potentialtheorie. welche nach der Erfassung möglichst umfangreicher Klassen von Differentialgleichungen und Kernen drängt, zum anderen die Entwicklung der Theorie der Markoffschen Prozesse und der vor allem durch die bahnbrechende Arbeit von G.A.HUNT erwirkte Brückenschlag hinüber zur Potentialtheorie. Die genannte innere Entwicklung der Potentialtheorie hat,aufbauend auf Ideen von TAUTZ I} 9] , I} 0] , DOOB [!9] und BRELOT, zu einer Axiomatisierung der Theorie der harmonischen Funktionen ge­ führt mit dem Ziel eines gleichzeitigen Erfassens bereits vorliegen­ der Resultate über die Potentialtheorie RieTrlannscher Flächen und Greenscher Räume und einer Ausdehnung der Potentialtheorie der Laplace-Gleichung auf bislang unerforschte Klassen elliptischer Differentialgleichungen. A:m bekanntesten und a:m weitesten vollendet ist in dieser Richtung die in OS] dargestellte Theorie von BRELOT. Wichtige Ergänzungen verdankt man der These 1}1] von MadaTrle , HERVE ¿ Während die Brelotsche Theorie ausschließlich elliptische Gleichungen betrifft, bemühten sich DOOB ~o]. KAMKE ~{1 und Verf. um die Einbeziehung auch parabolischer partieller Diffe­ rentialgleichungen zweiter Ordnung.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen