Graphs on Surfaces and Their Applications
Lando, Sergei K., Zvonkin, Alexander K.
Produktnummer:
18029b12bb2e2e4d67838eaa3c28cd89c1
Autor: | Lando, Sergei K. Zvonkin, Alexander K. |
---|---|
Themengebiete: | Algebraic structure Galois theory Group representation Knot invariant Meromorphic function Representation theory Riemann surfaces Vassiliev invariants algebra embedded graphs |
Veröffentlichungsdatum: | 01.12.2003 |
EAN: | 9783540002031 |
Sprache: | Englisch |
Seitenzahl: | 455 |
Produktart: | Gebunden |
Herausgeber: | Gamkrelidze, R.V. Vassiliev, V.A. |
Verlag: | Springer Berlin |
Produktinformationen "Graphs on Surfaces and Their Applications"
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen