Graph Learning for Fashion Compatibility Modeling
Guan, Weili, Song, Xuemeng, Chang, Xiaojun, Nie, Liqiang
Produktnummer:
1838d7a7e3c4b94ec5b25d80f522f0e4f6
Autor: | Chang, Xiaojun Guan, Weili Nie, Liqiang Song, Xuemeng |
---|---|
Themengebiete: | Disentangled Representation Fashion Compatibility Modeling Fashion Recommendation Graph Convolutional Network Multimedia Retrieval Personalized Fashion Compatibility Modeling |
Veröffentlichungsdatum: | 03.11.2022 |
EAN: | 9783031188169 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 112 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Graph Learning for Fashion Compatibility Modeling"
This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items. This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items. To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning. Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen