Goldbach’s Problem
Rassias, Michael Th.
Produktnummer:
18bda1948ecaac4c3e8c2778fe0840f0d3
Autor: | Rassias, Michael Th. |
---|---|
Themengebiete: | BGC Binary Goldbach Conjecture Goldbach’s conjecture Hardy-Littlewood circle method Prime Number Theorem TGC Ternary Goldbach Conjecture The Circle Method Vaughan’s proof Vinogradov’s theorem |
Veröffentlichungsdatum: | 07.07.2017 |
EAN: | 9783319579122 |
Sprache: | Englisch |
Seitenzahl: | 122 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Selected Topics |
Produktinformationen "Goldbach’s Problem"
Important results surrounding the proof of Goldbach's ternary conjecture are presented in this book. Beginning with an historical perspective along with an overview of essential lemmas and theorems, this monograph moves on to a detailed proof of Vinogradov's theorem. The principles of the Hardy-Littlewood circle method are outlined and applied to Goldbach's ternary conjecture. New results due to H. Maier and the author on Vinogradov's theorem are proved under the assumption of the Riemann hypothesis. The final chapter discusses an approach to Goldbach's conjecture through theorems by L. G. Schnirelmann. This book concludes with an Appendix featuring a sketch of H. Helfgott's proof of Goldbach's ternary conjecture. The Appendix also presents some biographical remarks of mathematicians whose research has played a seminal role on the Goldbach ternary problem. The author's step-by-step approach makes this book accessible to those that have mastered classical number theory and fundamental notions of mathematical analysis. This book will be particularly useful to graduate students and mathematicians in analytic number theory, approximation theory as well as to researchers working on Goldbach's problem.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen