Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Ginzburg-Landau Vortices

74,89 €*

Versandkostenfrei

Produktnummer: 185bb87f7004bc48b3be32d539304ea631
Produktinformationen "Ginzburg-Landau Vortices"
This book is concerned with the study in two dimensions of stationary solutions of u? of a complex valued Ginzburg-Landau equation involving a small parameter ?. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ? has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ? tends to zero.One of the main results asserts that the limit u-star of minimizers u? exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized.The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen