Geometric Methods in Physical Systems: From Differentiable Structures to Applications
Produktnummer:
181fe2b70134b14d65b4c3cd08d1330a6a
Themengebiete: | 2D Incompressible Fluid Flows Monge-Ampère equation Non-Hausdorff line Nonholonomic Constraints Topological Field Theory |
---|---|
Veröffentlichungsdatum: | 10.10.2025 |
EAN: | 9783032003997 |
Sprache: | Englisch |
Seitenzahl: | 138 |
Produktart: | Unbekannt |
Herausgeber: | Combe, Noémie C. Ulan, Maria |
Verlag: | Springer International Publishing |
Untertitel: | The Wisla 22 Winter School and Workshop |
Produktinformationen "Geometric Methods in Physical Systems: From Differentiable Structures to Applications"
This book presents selected lectures from the Wisla 22 Winter School and Workshop organized by the Baltic Institute of Mathematics that illustrate the power of geometric methods in understanding complex physical systems. Chapters progress from foundational mathematical structures to concrete applications in fluid dynamics and mechanical systems, highlighting the profound connection between differential geometry and physical phenomena.The first chapter investigates differentiable structures on a non-Hausdorff line with two origins, setting the stage for the applications that follow. The next chapter transitions to fluid mechanics through a study of generalized geometry in two-dimensional incompressible fluid flows, establishing the mathematical framework needed for analyzing fluid systems through geometric lenses. Building on these foundations, the third chapter expands the perspective with a comprehensive treatment of nonlinear differential equations in fluid mechanics, utilizing concepts from contact and symplectic geometry to illuminate singular properties of fluid dynamics solutions. Finally, the fourth chapter demonstrates how geometric methods extend beyond fluid mechanics to mechanical systems with nonholonomic constraints, revealing how geometric formulations can address challenging phenomena like discontinuities, collisions, and the counterintuitive stabilization of inverted pendulums.Geometric Methods in Physical Systems is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and mathematical analysis is assumed.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen