Geometric Continuum Mechanics and Induced Beam Theories
R. Eugster, Simon
Produktnummer:
1894b514c43e4542fdbac6b14e03be6822
Autor: | R. Eugster, Simon |
---|---|
Themengebiete: | Applications of Beam Theories Beam Theories Continuum Mechanics Foundations of Continuum Mechanics Nonlinear Beam Theories |
Veröffentlichungsdatum: | 06.10.2016 |
EAN: | 9783319368511 |
Sprache: | Englisch |
Seitenzahl: | 146 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Geometric Continuum Mechanics and Induced Beam Theories"
This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen