Geometric Computing with Clifford Algebras
Produktnummer:
18f57ec05542654b2eb8ed55c1b13dcbbe
Themengebiete: | Algebra Algebraic Expressions Algebraic Geometry Clifford Algebras Computational Geometry Computer Computer Vision Geometric Computing Geometric Languages Neural Computation |
---|---|
Veröffentlichungsdatum: | 22.05.2001 |
EAN: | 9783540411987 |
Sprache: | Englisch |
Seitenzahl: | 551 |
Produktart: | Gebunden |
Herausgeber: | Sommer, Gerald |
Verlag: | Springer Berlin |
Untertitel: | Theoretical Foundations and Applications in Computer Vision and Robotics |
Produktinformationen "Geometric Computing with Clifford Algebras"
Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen