Generative Adversariale Netzwerke in der IT-Sicherheit. Nutzungspotenziale und Herausforderungen bei der Erkennung von Schadsoftware
Jäger, Alexander
| Autor: | Jäger, Alexander |
|---|---|
| Veröffentlichungsdatum: | 26.04.2023 |
| EAN: | 9783346878311 |
| Auflage: | 001 |
| Sprache: | Deutsch |
| Seitenzahl: | 176 |
| Produktart: | Kartoniert / Broschiert |
| Verlag: | GRIN Verlag |
Produktinformationen "Generative Adversariale Netzwerke in der IT-Sicherheit. Nutzungspotenziale und Herausforderungen bei der Erkennung von Schadsoftware"
Bachelorarbeit aus dem Jahr 2023 im Fachbereich Informatik - IT-Security, Note: 1,3, Wilhelm Büchner Hochschule Private Fernhochschule Darmstadt, Sprache: Deutsch, Abstract: In dieser Arbeit wird der mögliche Einfluss einer Anwendung von Generativen Adversarialen Netzwerken (GANs) auf Entwicklungen und Strategien im Kontext der Erkennung von Schadsoftware untersucht. Diese generativen Modelle aus dem Bereich des Maschinellen Lernens (ML) sind in der Lage, anhand eines gegebenen Trainingsdatensatzes neue Datenbeispiele mit den gleichen Merkmalen der zugrundeliegenden Trainingsdaten zu synthetisieren. Das Untersuchungsziel orientierte sich an der Beantwortung der folgenden Forschungsfrage: Inwieweit hat der Einsatz von GANs Einfluss auf die Entwicklung von Systemen und Strategien, die zur Erkennung von Schadsoftware genutzt werden? Dabei wurden sowohl offensive als auch defensive Anwendungsmöglichkeiten von GANs sowie mögliche Nutzungspotenziale und Herausforderungen betrachtet. Zur Beantwortung der Forschungsfrage wurde eine qualitative Befragung von Experten durchgeführt, die aufgrund ihrer Fachexpertise den Untersuchungsgegenstand einordneten.
Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen