Gaussian Measures in Finite and Infinite Dimensions
Stroock, Daniel W.
Produktnummer:
1887b5bc2c637e45228d8f560fed062aa3
Autor: | Stroock, Daniel W. |
---|---|
Themengebiete: | Banach space Cramer-Levy theorem Gaussian families Gaussian measures Gaussian spectral properties Gross logarithmic inequalities Wiener spaces characteristic functions |
Veröffentlichungsdatum: | 16.02.2023 |
EAN: | 9783031231216 |
Sprache: | Englisch |
Seitenzahl: | 144 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Gaussian Measures in Finite and Infinite Dimensions"
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to thoseproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this bookshould be accessible to either undergraduate or graduatestudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen