Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems
Tatarenko, Tatiana
Produktnummer:
18915f1c01153c41148cf899a50b257ad0
Autor: | Tatarenko, Tatiana |
---|---|
Themengebiete: | consensus-based algorithms distributed optimization game-theoretic approach to optimization game-theoretic learning game theory learning algorithms multi-agent optimization potential games stochastic methods |
Veröffentlichungsdatum: | 28.09.2017 |
EAN: | 9783319654782 |
Sprache: | Englisch |
Seitenzahl: | 171 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems"
This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen