Galerkin Finite Element Methods for Parabolic Problems
Thomee, Vidar
Produktnummer:
18a6d84c2532114d55a7e7c12bb0e74982
Autor: | Thomee, Vidar |
---|---|
Themengebiete: | Approximation Galerkin methods differential equations finite element method finite element theory maximum parabolic partial |
Veröffentlichungsdatum: | 18.11.2010 |
EAN: | 9783642069673 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 364 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Galerkin Finite Element Methods for Parabolic Problems"
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin ?nite element methods as appliedtoparabolicpartialdi?erentialequations. Theemphasesandselection of topics re?ects my own involvement in the ?eld over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin ?nite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doingso I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by ?rst treating the time discretization of an abstract di?erential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen