Foundations of the Complex Variable Boundary Element Method
Hromadka, Theodore, Whitley, Robert
Produktnummer:
18f93ffccf162d41378ff52b4a8d9b6225
Autor: | Hromadka, Theodore Whitley, Robert |
---|---|
Themengebiete: | Banach Spaces Complex Variable Boundary Element Method (CVBEM) Dirichlet Problem Hilbert Spaces Laplace Equations Multi-dimensional Complex Variables Poisson Equations |
Veröffentlichungsdatum: | 21.05.2014 |
EAN: | 9783319059532 |
Sprache: | Englisch |
Seitenzahl: | 80 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Foundations of the Complex Variable Boundary Element Method"
This book explains and examines the theoretical underpinnings of the Complex Variable Boundary Element Method (CVBEM) as applied to higher dimensions, providing the reader with the tools for extending and using the CVBEM in various applications. Relevant mathematics and principles are assembled and the reader is guided through the key topics necessary for an understanding of the development of the CVBEM in both the usual two as well as three or higher dimensions. In addition to this, problems are provided that build upon the material presented. The Complex Variable Boundary Element Method (CVBEM) is an approximation method useful for solving problems involving the Laplace equation in two dimensions. It has been shown to be a useful modelling technique for solving two-dimensional problems involving the Laplace or Poisson equations on arbitrary domains. The CVBEM has recently been extended to 3 or higher spatial dimensions, which enables the precision of the CVBEM in solving the Laplace equation to be now available for multiple dimensions. The mathematical underpinnings of the CVBEM, as well as the extension to higher dimensions, involve several areas of applied and pure mathematics including Banach Spaces, Hilbert Spaces, among other topics. This book is intended for applied mathematics graduate students, engineering students or practitioners, developers of industrial applications involving the Laplace or Poisson equations and developers of computer modelling applications.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen