Fields and Galois Theory
Howie, John M.
Produktnummer:
1829a67576054a42669fde24a6d28259c9
Autor: | Howie, John M. |
---|---|
Themengebiete: | Abstract algebra Field theory Galois theory Group theory Polynomials algebra finite field |
Veröffentlichungsdatum: | 19.12.2005 |
EAN: | 9781852339869 |
Sprache: | Englisch |
Seitenzahl: | 226 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer London |
Produktinformationen "Fields and Galois Theory"
Fieldsaresetsinwhichallfouroftherationaloperations,memorablydescribed by the mathematician Lewis Carroll as “perdition, distraction, ugli?cation and derision”, can be carried out. They are assuredly the most natural of algebraic objects, since most of mathematics takes place in one ?eld or another, usually the rational ?eld Q, or the real ?eld R, or the complex ?eld C. This book sets out to exhibit the ways in which a systematic study of ?elds, while interesting in its own right, also throws light on several aspects of classical mathematics, notably on ancient geometrical problems such as “squaring the circle”, and on the solution of polynomial equations. The treatment is unashamedly unhistorical. When Galois and Abel dem- strated that a solution by radicals of a quintic equation is not possible, they dealt with permutations of roots. From sets of permutations closed under c- position came the idea of a permutation group, and only later the idea of an abstract group. In solving a long-standing problem of classical algebra, they laid the foundations of modern abstract algebra.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen