Fatou Type Theorems
Di Biase, F.
Produktnummer:
1844d8db57781d405eab2e5bd0a3f2dbde
Autor: | Di Biase, F. |
---|---|
Themengebiete: | Fatou Type Finite Pseudoconvexity function mathematics maximum theorem |
Veröffentlichungsdatum: | 21.01.2012 |
EAN: | 9781461274964 |
Sprache: | Englisch |
Seitenzahl: | 154 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Birkhäuser Boston |
Untertitel: | Maximal Functions and Approach Regions |
Produktinformationen "Fatou Type Theorems"
A basic principle governing the boundary behaviour of holomorphic func tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen