Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Emulation of Complex Fluid Flows

159,95 €*

Dieses Produkt erscheint am 6. November 2025

Produktnummer: 18d0637ea1687940529e41faa0775afefd
Autor: Wang, Xingjian Yang, Vigor
Themengebiete: Data-Driven Methods in Thermal-Fluid Engineering Sciences Emulation of Spatio-Temporally Evolving Problems Machine Learning of Thermal-Fluid Dynamics. Projection-Based Machine Learning Reduced-Order Modeling
Veröffentlichungsdatum: 06.11.2025
EAN: 9783111631356
Auflage: 1
Sprache: Englisch
Seitenzahl: 135
Produktart: Gebunden
Verlag: De Gruyter
Untertitel: Projection-Based Reduced-Order Modeling and Machine Learning
Produktinformationen "Emulation of Complex Fluid Flows"
While artificial intelligence has made significant strides in imaging and natural language processing, its utilization in engineering science remains relatively new. This book aims to introduce machine learning techniques to facilitate the emulation of complex fluid flows. The work focuses on projection-based reduced-order models (ROMs) that condense high-dimensional data into a low-dimensional subspace by leveraging principal components. Techniques like proper orthogonal decomposition (POD) and convolutional autoencoder (CAE) are utilized to configure this subspace, establishing a functional mapping between input parameters and solution fields. The applicability of POD-based ROMs for spatial and spatiotemporal problems are explored across various engineering scenarios, including flow past a cylinder, supercritical turbulent flows, and hydrogen-blended combustion. To capture intricate dynamics, common POD, kernel-smoothed POD, and common kernel-smoothed POD methods are developed in sequence. Additionally, the effectiveness of POD and CAE in capturing nonlinear features are compared. This book is designed to benefit graduate students and researchers interested in the intersection of data and engineering sciences.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen