Elliptic Partial Differential Equations
Volpert, Vitaly
Produktnummer:
18c1f13c351fa14492a0982871d93246b2
Autor: | Volpert, Vitaly |
---|---|
Themengebiete: | bifurcations of solutions classical theory existence of solutions partial differential equations population dynamics reaction-diffusion equations stability of solutions |
Veröffentlichungsdatum: | 20.05.2014 |
EAN: | 9783034808125 |
Sprache: | Englisch |
Seitenzahl: | 784 |
Produktart: | Gebunden |
Verlag: | Springer Basel |
Untertitel: | Volume 2: Reaction-Diffusion Equations |
Produktinformationen "Elliptic Partial Differential Equations"
If we had to formulate in one sentence what this book is about, it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described by reaction-diffusion equations. The theory of reaction-diffusion equations appeared in the first half of the last century. In the present time, it is widely used in population dynamics, chemical physics, biomedical modelling. The purpose of this book is to present the mathematical theory of reaction-diffusion equations in the context of their numerous applications. We will go from the general mathematical theory to specific equations and then to their applications. Existence, stability and bifurcations of solutions will be studied for bounded domains and in the case of travelling waves. The classical theory of reaction-diffusion equations and new topics such as nonlocal equations and multi-scale models in biology will be considered.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen