Elliptic Curves
Husemöller, Dale
Produktnummer:
18df16e3fe1fe947cbbe18f4d6bf2aa930
Autor: | Husemöller, Dale |
---|---|
Themengebiete: | Dimension Grad algebraic curve |
Veröffentlichungsdatum: | 22.12.2003 |
EAN: | 9780387954905 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 490 |
Produktart: | Gebunden |
Verlag: | Springer US |
Produktinformationen "Elliptic Curves"
There are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen