Dirac-Operatoren in der Riemannschen Geometrie
Friedrich, Thomas
| Autor: | Friedrich, Thomas |
|---|---|
| Themengebiete: | Differenzialgeometrie / Riemann Riemannsche Geometrie |
| Veröffentlichungsdatum: | 13.06.1997 |
| EAN: | 9783528069261 |
| Sprache: | Deutsch |
| Seitenzahl: | 224 |
| Produktart: | Kartoniert / Broschiert |
| Verlag: | Vieweg & Teubner Vieweg+Teubner Verlag |
| Untertitel: | Mit einem Ausblick auf die Seiberg-Witten-Theorie |
Produktinformationen "Dirac-Operatoren in der Riemannschen Geometrie"
1 Clifford-Algebren und Spin-Darstellung.- 1.1 Lineare Algebra quadratischer Formen.- 1.2 Die Clifford-Algebra einer quadratischen Form.- 1.3 Clifford-Algebren reeller, negativ-definiter quadratischer Formen.- 1.4 Die Pin- und die Spin-Gruppe.- 1.5 Die Spin-Darstellung.- 1.6 Die Gruppe SpinC.- 1.7 Reelle und quaternionische Strukturen im Raum der n-Spinoren.- 1.8 Literatur und Aufgaben.- 2 Spin-Strukturen.- 2.1 Existenz und Klassifikation von Spin-Strukturen eines SO(n)-Hauptfaserbündels.- 2.2 Beschreibung von Spin-Strukturen in Überlagerungen.- 2.3 Spin-Strukturen von G-Hauptfaserbündeln.- 2.4 Existenz von SpinC-Strukturen.- 2.5 Assoziierte Spinorbündel.- 2.6 Literatur und Aufgaben.- 3 Dirac-Operatoren.- 3.1 Zusammenhänge in Spinorbündeln.- 3.2 Der Dirac- und der Laplace-Operator im Spinorbündel.- 3.3 Die Lichnerowicz-Formel.- 3.4 Hermitesche Mannigfaltigkeiten und Spinoren.- 3.5 Der Dirac-Operator eines Riemannsch-symmetrischen Raumes.- 3.6 Literatur und Aufgaben.- 4 Analytische Eigenschaften der Dirac-Operatoren.- 4.1 Die wesentliche Selbstadjungiertheit von Dirac-Operatoren in L2.- 4.2 Das Spektrum von Dirac-Operatoren über kompakten Mannigfaltigkeiten.- 4.3 Dirac-Operatoren sind Fredholm-Operatoren.- 4.4 Literatur und Aufgaben.- 5 Abschätzungen der Eigenwerte des Dirac-Operators und Lösungen der Twistorgleichung.- 5.1 Abschätzungen von unten der Eigenwerte des Dirac-Operators.- 5.2 Riemannsche Mannigfaltigkeiten mit Killing-Spinoren.- 5.3 Die Twistorgleichung auf Riemannschen Mannigfaltigkeiten.- 5.4 Abschätzungen von oben der Eigenwerte des Dirac-Operators.- 5.5 Literatur und Aufgaben.- 6 Anhang 1: Seiberg-Witten-Invarianten.- 6.1 Zur Topologie 4-dimensionaler Mannigfaltigkeiten.- 6.2 Die Seiberg-Witten-Gleichung.- 6.3 Die Seiberg-Witten-Invariante.-6.4 Verschwindungssätze.- 6.5 Der Fall dim mL(g) = 0.- 6.6 Der Kähler-Fall.- 6.7 Literatur.- 7 Anhang 2: Hauptfaserbündel und Zusammenhänge.- 7.1 Lokal-triviale Faserungen, Hauptfaserbündel, assoziierte Bündel und Vektorbündel - Beispiele und Definitionen.- 7.2 Der Klassifizierungsraum einer topologischen Gruppe und die Homotopieklassifikation der Hauptfaserbündel.- 7.3 Zusammenhänge in Hauptfaserbündeln.- 7.4 Absolutes Differential und Krümmung eines Zusammenhangs.- 7.5 Zusammenhänge in U(1)-Hauptfaserbündeln und der Satz von Weyl.- 7.6 Induzierte Zusammenhänge und Reduktion eines Zusammenhangs.- 7.7 Die globale Variante des Frobenius-Theorems.- 7.8 Der Satz von Freudenthal-Yamabe.- 7.9 Holonomietheorie.- Literatur.- Namens- und Sachverzeichnis.
Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen