Diffeomorphisms of Elliptic 3-Manifolds
Hong, Sungbok, Kalliongis, John, McCullough, Darryl, Rubinstein, J. Hyam
Produktnummer:
18874998bf2dad46e98865d16719873d24
Autor: | Hong, Sungbok Kalliongis, John McCullough, Darryl Rubinstein, J. Hyam |
---|---|
Themengebiete: | 3-manifold 57M99, 57S10, 58D05, 58D29 Frechet Smale Conjecture elliptic |
Veröffentlichungsdatum: | 28.08.2012 |
EAN: | 9783642315633 |
Sprache: | Englisch |
Seitenzahl: | 155 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Diffeomorphisms of Elliptic 3-Manifolds"
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen