Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Der goldene Schnitt im Sekantenverfahren. Definition und Beweis

15,95 €*

Versandkostenfrei

Produktnummer: 16A47081512
Autor: Egger, Simon
Veröffentlichungsdatum: 26.05.2023
EAN: 9783346883193
Auflage: 001
Sprache: Deutsch
Seitenzahl: 20
Produktart: Kartoniert / Broschiert
Verlag: GRIN Verlag
Produktinformationen "Der goldene Schnitt im Sekantenverfahren. Definition und Beweis"
Bachelorarbeit aus dem Jahr 2019 im Fachbereich Didaktik - Mathematik, Note: 2, Universität Wien, Sprache: Deutsch, Abstract: Das konkrete Thema in meiner Arbeit ist ein Beweis, dass die Konvergenzordnung des Sekantenverfahren der goldene Schnitt ist. Der goldene Schnitt faszinierte die MathematikerInnen schon seit je her, und er taucht in vielen Bereich des Alltags auf, wie in der Musik, in der Natur oder in der Kunst. Was allerdings die Wenigsten wissen ist, dass der goldene Schnitt auch in einem numerischen Verfahren auftaucht, in dem es darum geht, durch ein geeignetes Intervall und in weiterer Folge durch geeignete Sekanten die Nullstellen von Funktionen zu ermitteln. Bevor ich allerdings diesen Beweis führe, gebe ich in Kapitel 1 einige allgemeine Informationen zum goldenen Schnitt bzw. gebe einen Überblick, was die goldene Zahl 1+¿52 geometrisch überhaupt bedeutet. Das Kapitel 1 orientiert sich an dem Buch "Der goldene Schnitt" von Albrecht Beutelspacher und Bernhard Petri. Außerdem führe ich einen Beweis von Euler in diesem Kapitel, um den LeserInnen zu zeigen, wie man von einem gewissen Verhältnis zu dieser besonderen Zahl überhaupt gelangt. Der Beweis in Kapitel 2, der sich an den Beweis von Bourgeois aus dem Buch "Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens" orientiert, wurde in drei Schritte aufgeteilt. Bevor allerdings dieser Beweis geführt wird, werde ich zunächst mal ganz allgemein einige Begriffe wie das Sekantenverfahren oder die Konvergenzordnung erklären. Weiters möchte ich ausführen, wofür das Sekantenverfahren angewendet wird.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen