Data-Driven Fault Detection for Industrial Processes
Chen, Zhiwen
Produktnummer:
182c10d183e4a94f05916212a6cb8dbdd3
Autor: | Chen, Zhiwen |
---|---|
Themengebiete: | Data-Driven method Deterministic disturbances Kernel representation Multivariate statistical process monitoring Performance evaluation Subspace method |
Veröffentlichungsdatum: | 09.01.2017 |
EAN: | 9783658167554 |
Sprache: | Englisch |
Seitenzahl: | 112 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Fachmedien Wiesbaden GmbH |
Untertitel: | Canonical Correlation Analysis and Projection Based Methods |
Produktinformationen "Data-Driven Fault Detection for Industrial Processes"
Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen