Conditional Independence in Applied Probability
Pfeiffer, P.E.
Produktnummer:
18f52b60d21835461588c58e694198ed18
Autor: | Pfeiffer, P.E. |
---|---|
Themengebiete: | calculus probability probability space probability theory |
Veröffentlichungsdatum: | 09.11.2011 |
EAN: | 9781461263371 |
Sprache: | Englisch |
Seitenzahl: | 158 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Birkhäuser Boston |
Produktinformationen "Conditional Independence in Applied Probability"
It would be difficult to overestimate the importance of stochastic independence in both the theoretical development and the practical appli cations of mathematical probability. The concept is grounded in the idea that one event does not "condition" another, in the sense that occurrence of one does not affect the likelihood of the occurrence of the other. This leads to a formulation of the independence condition in terms of a simple "product rule," which is amazingly successful in capturing the essential ideas of independence. However, there are many patterns of "conditioning" encountered in practice which give rise to quasi independence conditions. Explicit and precise incorporation of these into the theory is needed in order to make the most effective use of probability as a model for behavioral and physical systems. We examine two concepts of conditional independence. The first concept is quite simple, utilizing very elementary aspects of probability theory. Only algebraic operations are required to obtain quite important and useful new results, and to clear up many ambiguities and obscurities in the literature.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen