Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Combinatorial Properties of Periodic Patterns in Compressed Strings

14,90 €*

Versandkostenfrei

Produktnummer: 185404836cdf9d417dbb6d5967384a1fd8
Autor: Pape-Lange, Julian
Themengebiete: Algorithmus Kombinatorik Mustererkennung Periodizität Textkompression
Veröffentlichungsdatum: 10.10.2023
EAN: 9783961001910
Sprache: Englisch
Seitenzahl: 154
Produktart: Kartoniert / Broschiert
Verlag: Universitätsverlag Chemnitz
Produktinformationen "Combinatorial Properties of Periodic Patterns in Compressed Strings"
In this thesis, we study the following three types of periodic string patterns and some of their variants. Firstly, we consider maximal d-repetitions. These are substrings that are at least 2+d times as long as their minimum period. Secondly, we consider 3-cadences. These are arithmetic subsequence of three equal characters. Lastly, we consider maximal pairs. These are pairs of identical substrings. Maximal d-repetitions and maximal pairs of uncompressed strings are already well-researched. However, no non-trivial upper bound for distinct occurrences of these patterns that take the compressed size of the underlying strings into account were known prior to this research. We provide upper bounds for several variants of these two patterns that depend on the compressed size of the string, the logarithm of the string's length, the highest allowed power and d. These results also lead to upper bounds and new insights for the compacted directed acyclic word graph and the run-length encoded Burrows-Wheeler transform. We prove that cadences with three elements can be efficiently counted in uncompressed strings and can even be efficiently detected on grammar-compressed binary strings. We also show that even slightly more difficult variants of this problem are already NP-hard on compressed strings. Along the way, we extend the underlying geometry of the convolution from rectangles to arbitrary polygons. We also prove that this non-rectangular convolution can still be efficiently computed.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen