Bifurcation Theory of Impulsive Dynamical Systems
Church, Kevin E.M., Liu, Xinzhi
Produktnummer:
18f5a346a5224647e4af65e7d00f747065
Autor: | Church, Kevin E.M. Liu, Xinzhi |
---|---|
Themengebiete: | bifurcation theory centre manifold reduction impulsive differential equations impulsive dynamical systems impulsive functional differential equations invariant manifolds non-smooth dynamics stability |
Veröffentlichungsdatum: | 25.03.2021 |
EAN: | 9783030645328 |
Sprache: | Englisch |
Seitenzahl: | 388 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Bifurcation Theory of Impulsive Dynamical Systems"
This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations.Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen