Bieberbach Groups and Flat Manifolds
Charlap, Leonard S.
Produktnummer:
18d35e22ce7233419a8bd00194beae5c65
Autor: | Charlap, Leonard S. |
---|---|
Themengebiete: | Algebraic structure Finite Invariant Morphism Riemannian manifold Topology algebra curvature differential topology geometry |
Veröffentlichungsdatum: | 10.10.1986 |
EAN: | 9780387963952 |
Sprache: | Englisch |
Seitenzahl: | 242 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Produktinformationen "Bieberbach Groups and Flat Manifolds"
Many mathematics books suffer from schizophrenia, and this is yet another. On the one hand it tries to be a reference for the basic results on flat riemannian manifolds. On the other hand it attempts to be a textbook which can be used for a second year graduate course. My aim was to keep the second personality dominant, but the reference persona kept breaking out especially at the end of sections in the form of remarks that contain more advanced material. To satisfy this reference persona, I'll begin by telling you a little about the subject matter of the book, and then I'll talk about the textbook aspect. A flat riemannian manifold is a space in which you can talk about geometry (e. g. distance, angle, curvature, "straight lines," etc. ) and, in addition, the geometry is locally the one we all know and love, namely euclidean geometry. This means that near any point of this space one can introduce coordinates so that with respect to these coordinates, the rules of euclidean geometry hold. These coordinates are not valid in the entire space, so you can't conclude the space is euclidean space itself. In this book we are mainly concerned with compact flat riemannian manifolds, and unless we say otherwise, we use the term "flat manifold" to mean "compact flat riemannian manifold. " It turns out that the most important invariant for flat manifolds is the fundamental group.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen