Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Best Approximation in Inner Product Spaces

53,49 €*

Versandkostenfrei

Produktnummer: 188c84b7d8ee994005936ae37d9f91e736
Autor: Deutsch, Frank R.
Themengebiete: Convexity Hilbert space algorithms calculus compactness extrema linear algebra
Veröffentlichungsdatum: 20.04.2001
EAN: 9780387951560
Sprache: Englisch
Seitenzahl: 338
Produktart: Gebunden
Verlag: Springer US
Produktinformationen "Best Approximation in Inner Product Spaces"
This book evolved from notes originally developed for a graduate course, "Best Approximation in Normed Linear Spaces," that I began giving at Penn State Uni versity more than 25 years ago. It soon became evident. that many of the students who wanted to take the course (including engineers, computer scientists, and statis ticians, as well as mathematicians) did not have the necessary prerequisites such as a working knowledge of Lp-spaces and some basic functional analysis. (Today such material is typically contained in the first-year graduate course in analysis. ) To accommodate these students, I usually ended up spending nearly half the course on these prerequisites, and the last half was devoted to the "best approximation" part. I did this a few times and determined that it was not satisfactory: Too much time was being spent on the presumed prerequisites. To be able to devote most of the course to "best approximation," I decided to concentrate on the simplest of the normed linear spaces-the inner product spaces-since the theory in inner product spaces can be taught from first principles in much less time, and also since one can give a convincing argument that inner product spaces are the most important of all the normed linear spaces anyway. The success of this approach turned out to be even better than I had originally anticipated: One can develop a fairly complete theory of best approximation in inner product spaces from first principles, and such was my purpose in writing this book.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen