Bayesian Nonparametric Statistics
Castillo, Ismaël
Produktnummer:
1823cafe29377f4b82b98aab91900b8e65
Autor: | Castillo, Ismaël |
---|---|
Themengebiete: | Bayesian Deep Neural Networks Bayesian Inference Bernstein-von Mises Theorems High-Dimensional Models Nonparametric Models Posterior Distributions Uncertainty Quantification Variational Bayes |
Veröffentlichungsdatum: | 19.11.2024 |
EAN: | 9783031740343 |
Sprache: | Englisch |
Seitenzahl: | 216 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | École d’Été de Probabilités de Saint-Flour LI - 2023 |
Produktinformationen "Bayesian Nonparametric Statistics"
This up-to-date overview of Bayesian nonparametric statistics provides both an introduction to the field and coverage of recent research topics, including deep neural networks, high-dimensional models and multiple testing, Bernstein-von Mises theorems and variational Bayes approximations, many of which have previously only been accessible through research articles. Although Bayesian posterior distributions are widely applied in astrophysics, inverse problems, genomics, machine learning and elsewhere, their theory is still only partially understood, especially in complex settings such as nonparametric or semiparametric models. Here, the available theory on the frequentist analysis of posterior distributions is outlined in terms of convergence rates, limiting shape results and uncertainty quantification. Based on lecture notes for a course given at the St-Flour summer school in 2023, the book is aimed at researchers and graduate students in statistics and probability.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen