Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Bayesian Non-linear Statistical Inverse Problems

39,00 €*

Versandkostenfrei

Produktnummer: 18d90cad83374d4e8a897cb75d3ac04d19
Autor: Nickl, Richard
Themengebiete: Darcy’s problem Langevin algorithms Statistical inverse problem non-parametric statistics
Veröffentlichungsdatum: 01.06.2023
EAN: 9783985470532
Auflage: 1
Sprache: Englisch
Seitenzahl: 159
Produktart: Kartoniert / Broschiert
Verlag: EMS Press
Produktinformationen "Bayesian Non-linear Statistical Inverse Problems"
Bayesian methods based on Gaussian process priors are frequently used in statistical inverse problems arising with partial differential equations (PDEs). They can be implemented by Markov chain Monte Carlo (MCMC) algorithms. The underlying statistical models are naturally high- or infinite-dimensional and the present book presents a rigorous mathematical analysis of the statistical performance, and algorithmic complexity, of such methods in a natural setting of non-linear random design regression. Due to the non-linearity present in many of these inverse problems, natural least squares functionals are non-convex and the Bayesian paradigm presents an attractive alternative to optimisation-based approaches. This book develops a general theory of Bayesian inference for non-linear forward maps and rigorously considers two PDE model examples arising with Darcy’s problem and a Schrödinger equation. The focus is initially on statistical consistency of Gaussian process methods, and then moves on to study local fluctuations and approximations of posterior distributions by Gaussian or log-concave measures whose curvature is described by PDE mapping properties of underlying ‘information operators’. Applications to the algorithmic runtime of gradient-based MCMC methods are discussed as well as computation time lower bounds for worst case performance of some algorithms.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen