Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Aufzählbarkeit Entscheidbarkeit Berechenbarkeit

59,99 €*

Versandkostenfrei

Produktnummer: 16A34987
Autor: Hermes, Hans
Veröffentlichungsdatum: 29.08.1978
EAN: 9783540088691
Auflage: 003
Sprache: Deutsch
Seitenzahl: 276
Produktart: Kartoniert / Broschiert
Verlag: Springer Springer-Verlag GmbH Springer Spektrum
Untertitel: Einführung in die Theorie der rekursiven Funktionen
Produktinformationen "Aufzählbarkeit Entscheidbarkeit Berechenbarkeit"
Erstes Kapitel. Einführende Betrachtungen über Algorithmen.- § 1. Der Begriff des Algorithmus.- § 2. Die grundlegenden Begriffe der Theorie des Konstruktiven.- § 3. Turingmaschinen als Präzisierung des Begriffs eines Algorithmus.- § 4. Historische Bemerkungen.- Zweites Kapitel. Turingmaschinen.- § 5. Definition der Turingmaschinen.- § 6. Präzisierung konstruktiver Begriffe mittels Turingmaschinen. Beispiele.- § 7. Zusammensetzung von Turingmaschinen.- § 8. Spezielle Turingmaschinen.- § 9. Beispiele für Turing-Berechenbarkeit und Turing-Entscheidbarkeit.- Drittes Kapitel. µ-rekursive Funktionen.- § 10. Primitiv-rekursive Funktionen.- §11. Primitiv-rekursive Prädikate.- § 12. Der µ-Operator.- § 13. Beispiel einer berechenbaren Funktion, die nicht primitiv-rekursiv ist.- § 14. µ-rekursive Funktionen und Prädikate.- Viertes Kapitel. Die Äquivalenz von Turing-Berechenbarkeit und µ-Rekursivität.- §15. Übersicht. Normierte Turing-Berechenbarkeit.- § 16. Die Turing-Berechenbarkeit der µ-rekursiven Funktionen.- §17. Gödelisierung von Turingmaschinen.- § 18. Die µ-Rekursivität der Turing-berechenbaren Funktionen. Die Kleenesche Normalform.- Fünftes Kapitel. Rekursive Funktionen.- §19. Definition der rekursiven Funktionen.- § 20. Die Rekursivität der µ-rekursiven Funktionen.- §21. Die µ-Rekursivität der rekursiven Funktionen.- Sechstes Kapitel. Unentscheidbare Prädikate.- § 22. Einfache unentscheidbare Prädikate.- § 23. Die Unlösbarkeit des Wortproblems für Semi-Thue-Systeme und Thue-Systeme.- §24. Die Prädikatenlogik.- § 25. Die Unentscheidbarkeit der Prädikatenlogik.- § 26. Die Unvollständigkeit der Prädikatenlogik der zweiten Stufe.- § 27. Die Unentscheidbarkeit und die Unvoll ständigkeit der Arithmetik.- SiebentesKapitel. Verschiedenes.- §28. Aufzählbare Prädikate.- § 29. Arithmetische Prädikate.- § 30. Universelle Turingmaschinen.- §31. ?-K-Definierbarkeit.- § 32. Die Minimallogik von Fitch.- § 33. Aufzählbare Mengen über beliebigen Alphabeten. Chomsky-Sprachen.- § 34. Das Korrespondenzproblem von Post.- § 35. Weitere Präzisierungen des Begriffs des Algorithmus.- § 36. Rekursive Analysis.- Namen- und Sachverzeichnis.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen