Analysis IV
Maz'ya, V.G.
Produktnummer:
1886ce7d074b624a0f86814802c51337cf
Autor: | Maz'ya, V.G. |
---|---|
Themengebiete: | Integralgleichungen Nichtstetige Randintegrale Potentialtheorie Potential theory Randintegraltheorie Singuläre Integralgleichungen boundary integral equations eigenvalue problem integral equation integral equations |
Veröffentlichungsdatum: | 01.11.2012 |
EAN: | 9783642634918 |
Sprache: | Englisch |
Seitenzahl: | 236 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Nikol'skii, S. M. |
Verlag: | Springer Berlin |
Untertitel: | Linear and Boundary Integral Equations |
Produktinformationen "Analysis IV"
A linear integral equation is an equation of the form XEX. (1) 2a(x)cp(x) - Ix k(x, y)cp(y)dv(y) = f(x), Here (X, v) is a measure space with a-finite measure v, 2 is a complex parameter, and a, k, f are given (complex-valued) functions, which are referred to as the coefficient, the kernel, and the free term (or the right-hand side) of equation (1), respectively. The problem consists in determining the parameter 2 and the unknown function cp such that equation (1) is satisfied for almost all x E X (or even for all x E X if, for instance, the integral is understood in the sense of Riemann). In the case f = 0, the equation (1) is called homogeneous, otherwise it is called inhomogeneous. If a and k are matrix functions and, accordingly, cp and f are vector-valued functions, then (1) is referred to as a system of integral equations. Integral equations of the form (1) arise in connection with many boundary value and eigenvalue problems of mathematical physics. Three types of linear integralequations are distinguished: If 2 = 0, then (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on some subset of X but 2 i= 0, then (1) is said to be of the third kind.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen