Algebras of Unbounded Operators
Ber, Aleksey, Chilin, Vladimir, Levitina, Galina, Sukochev, Fedor, Zanin, Dmitriy
Produktnummer:
18d0abda4493ea430db1939efd17e6056a
Autor: | Ber, Aleksey Chilin, Vladimir Levitina, Galina Sukochev, Fedor Zanin, Dmitriy |
---|---|
Themengebiete: | Derivations Measurable Operators Murray-von Neumann Algebras Noncommutative Integration Operator Theory |
Veröffentlichungsdatum: | 03.03.2025 |
EAN: | 9783111597911 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 408 |
Produktart: | Kartoniert / Broschiert |
Verlag: | De Gruyter |
Untertitel: | Algebraic and Topological Aspects of Murray–von Neumann Algebras |
Produktinformationen "Algebras of Unbounded Operators"
Derivations on von Neumann algebras are well understood and are always inner, meaning that they act as commutators with a fixed element from the algebra itself. The purpose of this book is to provide a complete description of derivations on algebras of operators affiliated with a von Neumann algebra. The book is designed to serve as an introductory graduate level to various measurable operators affiliated with a von Neumann algebras and their properties. These classes of operators form their respective algebras and the problem of describing derivations on these algebras was raised by Ayupov, and later by Kadison and Liu. A principal aim of the book is to fully resolve the Ayupov-Kadison-Liu problem by proving a necessary and sufficient condition of the existence of non-inner derivation of algebras of measurable operators. It turns out that only for a finite type I von Neumann algebra M may there exist a non-inner derivation on the algebra of operators affiliated with M. In particular, it is established that the classical derivation d/dt of functions of real variables can be extended up to a derivation on the algebra of all measurable functions. This resolves a long-standing problem in classical analysis.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen