Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning

39,00 €*

Versandkostenfrei

Produktnummer: 184309707432684554955acf63c465c47d
Autor: Kottke, Daniel
Themengebiete: Active Learning Bayesian Estimation Machine Learning decision-theoretic holistic probabilistic
Veröffentlichungsdatum: 21.10.2021
EAN: 9783737609876
Sprache: Englisch
Seitenzahl: 245
Produktart: Kartoniert / Broschiert
Verlag: Kassel University Press
Produktinformationen "A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning"
Efficient labeling is an important topic in machine learning research as classifiers need labeled data. Whereas unlabeled data is easily gathered, labeling is exhausting, time-consuming, or expensive and should, therefore, be reduced to a minimum. Active learning aims to actively select useful, unlabeled instances for label acquisition to reduce the labeling effort while providing labeled training data such that the classifier performs well. This thesis proposes Probabilistic Active Learning, a holistic, decision-theoretic framework for active learning that enables optimization for every performance measure and classifier. Using the holistic mathematical description, we can define an upper baseline for active learning and identify theoretical similarities to other selection strategies. We evaluate our approach on 22 datasets for six different performance measures. Moreover, we show that our approach can be applied to multiple classifiers and can be used for batch selection. In another scenario, called transductive active learning, we provide a set of unlabeled instances and ask the active learning algorithm to return the correct labels only for this set. In contrast to the standard (inductive) scenario, where we aim to build a general classifier, we can either ask an oracle to provide the correct labels or use the classifier to predict the label. We introduce a new cost-based performance measure for transductive active learning and show the superiority of our probabilistic approach.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen