Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

A Consistent Helmholtz Framework for the Accurate Prediction of Linear and Nonlinear Thermoacoustic Stability in Gas Turbine Combustors

45,00 €*

Versandkostenfrei

Produktnummer: 1846fb9639f0874b38b7c4120b44a8927d
Autor: Heilmann, Gerrit
Themengebiete: Helmholtz Equation Reduced Order Modeling Thermoacoustics
Veröffentlichungsdatum: 27.02.2024
EAN: 9783843954204
Sprache: Englisch
Seitenzahl: 220
Produktart: Kartoniert / Broschiert
Verlag: Dr. Hut
Produktinformationen "A Consistent Helmholtz Framework for the Accurate Prediction of Linear and Nonlinear Thermoacoustic Stability in Gas Turbine Combustors"
A sequential computational procedure for the efficient and reliable prediction of combustion instabilities in future gas turbine generations is developed in the present thesis. Special focus is put on the accurate inclusion of damping mechanisms. Essentially, the procedure consists of the creation of a linear computational model, a subsequent linear stability analysis and finally an investigation of nonlinear saturation mechanisms. A particularly efficient linear computational approach is the combination of spatially resolved finite element method approaches based on the Helmholtz equation with one-dimensional network models to account for acoustic losses. To increase the accuracy of the Helmholtz approach, a methodology to include the advection of sound waves in arbitrary mean flow fields is developed. Similar to the regular Helmholtz equation, this approach requires the development of a transformation procedure for the combination with network models to avoid energetic errors at the coupling interfaces. Using this linear computational model for a modal stability analysis with established flame driving models allows to identify potentially unstable oscillation states. The corresponding modal results can subsequently be exploited to investigate nonlinear damping mechanisms by means of reduced order models. Therefore, a universal methodology coupled with nonlinear resonator models is developed. Finally, the efficiency of the approach and thus its applicability to industrial setups is demonstrated on the basis of a geometrically complex configuration representative for a commercial gas turbine combustor. This highlights the significance of nonlinear damping mechanisms for limit-cycle oscillations.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen